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Abstract 

The rapid advancement of deep learning in medical imaging has significantly 

improved lung disease diagnosis, with CNNs like EfficientNet showing strong 

performance on chest X-ray analysis. However, class imbalance remains a 

challenge, often reducing model accuracy. This study examines the impact of random 

oversampling compared to original and undersampled data in classifying lung 

diseases using EfficientNet-B2. Emphasizing its simplicity, the study evaluates 

whether random oversampling can match more complex methods like SMOTE. 

Through systematic data collection, preprocessing, and model training, performance 

is assessed using accuracy, precision, recall, and F1-score. Results show 

EfficientNet-B2 consistently outperforms MobileNetV3-Large across all sampling 

methods, with random oversampling achieving the best results—training accuracy 

of 99.61% and testing accuracy of 93.65% under a 70:30 split. While oversampling 

proves most effective, method selection should consider specific application needs, 

resource constraints, and deployment scale to ensure reliable diagnostic outcomes. 

 

Keywords– EfficientNet B2, MobileNet V3 Large, Lung Disease, Class Imbalance, 

Random Sampling. 
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1. Introduction 

The rapid advancement of deep learning, particularly in medical image 

analysis, has revolutionized the diagnosis and classification of lung 

diseases(Kermany et al., 2018). Convolutional Neural Networks (CNNs) have 

demonstrated remarkable success in detecting abnormalities in chest X-ray images, 

thereby assisting in the early and accurate identification of diseases(Wang et al., 

n.d.). Among various existing models, EfficientNet has emerged as a powerful 

architecture due to its scalable design and its efficiency in balancing model depth, 

width, and input resolution(Tan & Le, 2019). However, despite these 

advancements, one of the ongoing challenges in medical imaging datasets is class 

imbalance, where certain disease types have significantly fewer samples than 

others, leading to biased model performance(He & Garcia, 2009),(Alberto et al., 

n.d.). 

EfficientNet-B2 is a variant of EfficientNet that offers an optimal balance 

between accuracy and computational efficiency. Compared to other variants like 

EfficientNet-B0 and B1, which have fewer parameters, EfficientNet-B2 achieves 

a top-1 accuracy of 80.1% on the ImageNet dataset with approximately 9.1 million 

parameters and an input resolution of 260×260 pixels. This makes it highly capable 

of capturing important visual features without significantly increasing model 

complexity(Tan & Le, 2019). While larger models such as EfficientNet-B4 to B7 

do offer higher accuracy, they demand substantially more computational 

resources(Haixiang et al., 2017), making them less suitable for hardware-

constrained environments. In various studies, EfficientNet-B2 has demonstrated 

good generalization, fast training, and suitability for transfer learning on medical 

imaging datasets, with a lower risk of overfitting. Therefore, EfficientNet-B2 is 

considered an ideal solution for implementing deep learning models that require a 

balanced trade-off between efficiency and accuracy. 

Class imbalance is a well-documented issue in machine learning, especially 

in medical applications where rare diseases often have far fewer samples than more 

common ones(Johnson & Khoshgoftaar, 2019). This imbalance can lead deep 

learning models to be biased toward majority classes, resulting in poor 
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generalization for minority classes(Chawla et al., 2002). To address this problem, 

various data sampling techniques have been proposed, including oversampling and 

undersampling(Shorten & Khoshgoftaar, 2019), (Marques et al., 2020). Random 

sampling, as a basic yet widely used method, offers a simple way to balance 

datasets either by duplicating samples from the minority class (oversampling) or 

by reducing samples from the majority class (undersampling). However, the 

effectiveness of this method in medical image classification using deep learning, 

particularly when combined with advanced architectures like EfficientNet, still 

requires further investigation(Pramudhita et al., 2023). 

Recent studies have explored the use of EfficientNet in medical image 

classification and have shown its superior performance in tasks such as COVID-

19 detection from chest X-rays(Wang et al., n.d.). However, most of these studies 

focus more on improving model architecture rather than addressing dataset 

imbalance, even though this issue can significantly impact real-world applications. 

While advanced techniques such as the Synthetic Minority Over-sampling 

Technique (SMOTE)(Shorten & Khoshgoftaar, 2019) and data 

augmentation(Marques et al., 2020) have been explored, random sampling remains 

a computationally efficient alternative that deserves deeper analysis, especially in 

medical imaging scenarios with limited resources. 

This study investigates the impact of random sampling on the 

classification of lung diseases using the EfficientNet-B2 model. We evaluate 

how different random sampling strategies, such as random oversampling and 

random undersampling, affect model performance on imbalanced datasets. Our 

analysis builds upon previous research in deep learning for medical 

diagnosis(Kermany et al., 2018) and class imbalance mitigation(Alberto et al., 

n.d.), providing empirical insights into whether simpler sampling methods can 

yield competitive performance compared to more complex techniques. The 

objective of this study is to analyze the performance differences between these 

random sampling methods and to evaluate their classification accuracy. By 

leveraging state of the art CNN techniques, this research contributes to 
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improving lung disease detection and supports more accurate and efficient 

medical diagnosis. 

 

2. Method 

The proposed methodology follows a structured workflow for developing an 

effective image based machine learning model. The initial stage begins with data 

collection to obtain a diverse and relevant set of images for the intended 

application. To reduce bias and ensure data representation, random sampling is 

applied to divide the dataset into balanced subsets. Next, preprocessing techniques 

such as noise reduction, normalization, and data augmentation are applied to 

enhance image quality and improve the model’s generalization capability. The 

implementation architecture is then designed using Convolutional Neural 

Networks (CNNs) to extract hierarchical features from the preprocessed images. 

Model testing is conducted to validate its performance on unseen data. Finally, 

comprehensive evaluation is performed using metrics such as accuracy, precision, 

recall, and F1-score to assess the model's robustness and readiness for real world 

deployment. 

 

Figure 1. Research Methodology Diagram 

a) Data Collection 

The data were collected from public sources on Mendeley Data, consisting 

of a total of 11,702 chest X-ray images in JPG format. These include normal cases 
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(3,270 images), viral pneumonia (1,656 images), bacterial pneumonia (3,001 

images), and COVID-19 (1,281 images) from contributors such as Unais Sait, 

Gokul Lal KV, Sunny Prakash Prajapati, Rahul Bhaumik, Tarun Kumar, Sanjana 

Shivakumar, and Kriti Bhalla (Sait et al., 2021), as well as tuberculosis data (2,494 

images) from contributors Saira Kiran and Dr. Ishrat Jabeen (Kiran & Jabeen, 

2024). 

b) Random Sampling 

Random sampling is used to balance the imbalanced data through two 

techniques: oversampling and undersampling(Saputro & Rosiyadi, 2022). 

Oversampling increases the number of samples in the minority class by randomly 

duplicating them, while undersampling reduces the number of samples in the 

majority class by randomly selecting a subset. This results in a more balanced 

dataset(He et al., 2018). 

c) Preprocessing 

To standardize the lung disease image data, preprocessing steps include 

image resizing using compound scaling 260×260 pixels for EfficientNet-B2 and 

224×224 pixels for MobileNetV3-Large. This study used 30 epochs, a batch size 

of 32, a learning rate of 0.0001, and the Adam optimizer. Two data splitting 

scenarios were applied 70% training and 30% testing, and 80% training and 20% 

testing. 

Additionally, image augmentation was performed to enhance the model’s 

generalization ability and prevent overfitting. Random sampling was also applied 

to explore optimal training conditions, especially in addressing class imbalance in 

the dataset. The augmentation process expands the dataset by generating new 

image variations without changing their labels, contributing to improved model 

performance in classification tasks. 

d) EfficientNet-B2 

This model uses compound scaling to balance depth, width, and resolution 

simultaneously. It also adopts the Swish activation function, which outperforms 

ReLU in supporting the learning process. EfficientNet is a CNN architecture 
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optimized for a balance between depth, width, and resolution to achieve efficient 

and accurate image classification(Tan & Le, 2019). 

EfficientNet-B2 utilizes only 9.2 million parameters, fewer than similar 

variants like B3. Its architecture consists of an initial stem layer, seven main blocks 

with MBConv modules, residual connections, and a final layer for classification. 

e) MobileNetV3-Large 

MobileNetV3-Large is a deep learning architecture designed for high 

efficiency in image recognition, particularly on resource constrained devices. This 

model integrates several innovations such as the h-swish activation, inverted 

residual bottleneck blocks (IRLB), and neural architecture search (NAS). The 

IRLB structure includes 1×1 convolution, 3×3 depthwise convolution, and 1×1 

pointwise convolution designed for computational efficiency and training stability. 

MobileNetV3-Large retains critical information through pooling and 

nonlinear bottleneck stages before classification, making it well suited for large 

scale applications with limited hardware resources(Goodfellow et al., 2016). 

Moreover, the MobileNet architecture leverages depthwise separable convolutions 

to enhance computational efficiency(Goodfellow et al., 2016), making it ideal for 

deployment on devices such as smartphones and embedded systems. 

f) Model Training 

After designing the models and setting the hyperparameters for EfficientNet-

B2 and MobileNetV3-Large, the training process was conducted over 30 epochs 

using Google Colab Pro. The number of samples was adjusted according to the 

testing schemes defined. 

g) Model Testing 

The models were tested using 3,511 images under the 70:30 scenario and 

2,341 images under the 80:20 scenario for the original data, 

3,249 images under the 70:30 scenario and 2,436 images under the 80:20 scenario 

for the oversampled data, and 1,282 images under the 70:30 scenario and 961 

images under the 80:20 scenario for the undersampled data. The prediction results 

were then compared with the ground truth labels and evaluated using confusion 

matrices. 
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h) Model Evaluation 

After training, the models were evaluated using test data to assess their 

efficiency and accuracy. Evaluation was conducted using confusion matrices to 

calculate metrics such as accuracy, precision, recall, and F1-score. This study 

tested two architectures EfficientNet-B2 and MobileNetV3-Large with three 

sampling techniques (oversampling, original data, and undersampling) to analyze 

the impact of class imbalance and determine the best configuration. 

Confusion matrices were used to compute various evaluation metrics such as 

accuracy, precision, recall, and F1-score. Accuracy measures the proportion of 

correct predictions over the total test data, especially relevant when class 

distribution is balanced, as defined in Equation (1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

Precision focuses on how accurately the model classifies positive predictions, 

as defined in Equation (2). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

Recall measures the model's ability to identify all correctly classified positive 

instances, as defined in Equation (3). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

F1-score is the harmonic mean between precision and recall, as defined in 

Equation (4). 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

3. Result and Discussion 

This section will explain the training and evaluation results of the CNN 

architecture and describe the comparative results based on the scenarios used. 
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Model Training 

Tables 1. Training Results with Data Oversampling 

No Training Scenario Time 

Accuracy Results 

Training 

Data 

Testing 

Data 

Validation 

Data 

1 EfficientNet-B2 With Data 

Over Sampling Data Split 

70% training and 30% testing 

15.490 

Seconds 

99,61% 93,65% 94,33% 

2 EfficientNet-B2 With Data 

Over Sampling Data Split 

80% training and 20% testing 

17.567 

Seconds 

98,66% 92,48% 92,61% 

3 MobileNet V3 Large With 

Data Over Sampling Data 

Split 70% training and 30% 

testing 

16.519 

Seconds 

97,47% 90,52% 91,12% 

4 MobileNet V3 Large With 

Data Over Sampling Data 

Split 80% training and 20% 

testing 

18.232 

Seconds 

98,36% 93,18% 93,71% 

Based on the results in Tables 1, the best scenario is achieved using the 

EfficientNet-B2 model with over sampling and a data split of 70% for training and 

30% for testing. This is supported by a very high training accuracy of 99.61%, the 

highest testing accuracy of 93.65%, and the highest validation accuracy of 94.33%. 

In addition, the relatively fast training time of 15.490 seconds further confirms that 

this scenario is the most optimal overall. 

Tables 2. Training Results with Data Original 

No Training Scenario Time 

Accuracy Results 

Training 

Data 

Testing 

Data 

Validation 

Data 

1 EfficientNet-B2 With Data 

Original Data Split 70% 

training and 30% testing 

11.100 

seconds 

89,17% 89,40% 90,25% 

2 EfficientNet-B2 With Data 

Original Data Split 80% 

training and 20% testing 

12.146 

seconds 

98,40% 92,48% 92,99% 

3 MobileNet V3 Large With 

Data Original Data Split 70% 

training and 30% testing 

10.483 

seconds 

93,38% 89,49% 88,88% 

4 MobileNet V3 Large With 

Data Original Data Split 80% 

training and 20% testing 

9.074 

seconds 

90,51% 87,17% 87,07% 
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Based on the results in Tables 2, the best scenario is achieved using the 

EfficientNet-B2 model with original data and a data split of 80% for training and 

20% for testing. This scenario demonstrates the most optimal performance with 

the highest training accuracy of 98.40%, testing accuracy of 92.48%, and 

validation accuracy of 92.99%. Although the training time is slightly longer at 

12.146 seconds, this difference is still within a reasonable range and is justified by 

the significant improvement in accuracy. Therefore, this scenario is considered the 

best compared to others due to its superior accuracy. 

Tables 3. Training Results with Data Under Sampling 

No Training Scenario Time 

Accuracy Results 

Training 

Data 

Testing 

Data 

Validation 

Data 

1 EfficientNet-B2 With Data 

Under Sampling Data Split 

70% training and 30% testing 

4.427 

seconds 

95,49% 89,23% 89,06% 

2 EfficientNet-B2 With Data 

Under Sampling Data Split 

80% training and 20% testing 

6.220 

seconds 

97,88% 88,24% 87,81% 

3 MobileNet V3 Large With 

Data Under Sampling Data 

Split 70% training and 30% 

testing 

5.393 

seconds 

96,20% 88,22% 85,31% 

4 MobileNet V3 Large With 

Data Under Sampling Data 

Split 80% training and 20% 

testing 

5.193 

seconds 

89,31% 82,62% 83,74% 

Based on the results in Tables 3, the best scenario is achieved using the 

EfficientNet-B2 model with a 70% training and 30% testing data split. This 

scenario shows the most optimal performance with a training accuracy of 95.49%, 

the highest testing accuracy of 89.23%, and a validation accuracy of 89.06%. 

Moreover, it also recorded the fastest training time at only 4.427 seconds, 

emphasizing its computational efficiency. 

In this study, the comparison between EfficientNet-B2 and MobileNet V3 

Large reveals that EfficientNet-B2 consistently provides better accuracy in both 

validation and testing datasets across all scenarios. The model performs more 

stably and effectively, especially when combined with oversampling and 70/30 
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data split, achieving the highest overall accuracies of 99.61% (training), 93.65% 

(testing), and 94.33% (validation). This indicates superior generalization capability 

to unseen data. 

Overall, the oversampling scenario using EfficientNet-B2 with a 70/30 data 

split stands out as the best option in terms of accuracy, making it highly suitable 

for high reliability applications such as medical diagnostics or critical detection 

systems. Although the training time is slightly longer, the resulting accuracy gains 

are well worth the additional computational cost. 

Nevertheless, for use cases with limited computational resources or where 

faster training time is a priority, other scenarios such as using original data with an 

80/20 split, or under sampling with a 70/30 split data can be considered as viable 

alternatives. The 80/20 original data scenario offers a balance between high 

accuracy and training efficiency, while the under sampling scenario excels in 

speed, despite slightly lower accuracy. Therefore, selecting the best scenario 

ultimately depends on the specific priorities and requirements of each case study. 

Model Testing 

Tables 4. Testing and Evaluate Results with Data Over Sampling 

No Testing Scenario Accuracy 

Average 

Precision Recall 
F1-

Score 

1 EfficientNet-B2 With Data 

Over Sampling Data Split 70% 

training and 30% testing 

0,94 0,94 0,94 0,94 

2 EfficientNet-B2 With Data 

Over Sampling Data Split 80% 

training and 20% testing 

0,92 0,93 0,93 0,93 

3 MobileNet V3 Large With Data 

Over Sampling Data Split 70% 

training and 30% testing 

0,91 0,91 0,91 0,91 

4 MobileNet V3 Large With Data 

Over Sampling Data Split 80% 

training and 20% testing 

0,93 0,93 0,93 0,93 

Based on the evaluation results in Tables 4, the best scenario is using the 

EfficientNet-B2 model with an oversampling approach and a data split of 70% for 

training and 30% for testing. This scenario consistently demonstrates the highest 

performance across all evaluation metrics, with accuracy, precision, recall, and F1-
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score each reaching 0.94. These values indicate that the model is not only able to 

classify the data accurately overall but also maintains a balanced capability in 

correctly identifying positive classes, detecting all positive cases, and sustaining a 

balance between precision and recall. Therefore, this scenario is considered the 

most optimal choice to achieve the best classification performance on the tested 

data. 

Tables 5. Testing and Evaluate Results with Data Original 

No Testing Scenario Accuracy 
Average 

Precision Recall F1-Score 

1 EfficientNet-B2 With Data 

Original Data Split 70% 

training and 30% testing 

0,89 0,88 0,88 0,88 

2 EfficientNet-B2 With Data 

Original Data Split 80% 

training and 20% testing 

0,92 0,91 0,91 0,91 

3 MobileNet V3 Large With Data 

Original Data Split 70% 

training and 30% testing 

0,89 0,88 0,89 0,89 

4 MobileNet V3 Large With Data 

Original Data Split 80% 

training and 20% testing 

0,87 0,85 0,86 0,86 

Based on the evaluation results in Tables 5, the best scenario is achieved 

using the EfficientNet-B2 model with original data and a data split of 80% for 

training and 20% for testing. This scenario recorded the highest values across all 

evaluation metrics, with an accuracy of 0.92, precision of 0.91, recall of 0.91, and 

F1-score of 0.91. This indicates that the model is capable of delivering an optimal 

and balanced classification performance, both in terms of prediction accuracy and 

the ability to comprehensively detect the target class. Therefore, this scenario can 

be considered the superior choice among the other scenarios. 

Tables 6. Testing and Evaluate Results with Data Under Sampling 

No Testing Scenario Accuracy 
Average 

Precision Recall F1-Score 

1 EfficientNet-B2 With Data 

Under Sampling Data Split 

70% training and 30% 

testing 

0,89 0,89 0,89 0,89 

2 EfficientNet-B2 With Data 

Under Sampling Data Split 

0,88 0,88 0,88 0,88 
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80% training and 20% 

testing 

3 MobileNet V3 Large With 

Data Under Sampling Data 

Split 70% training and 30% 

testing 

0,88 0,88 0,88 0,88 

4 MobileNet V3 Large With 

Data Under Sampling Data 

Split 80% training and 20% 

testing 

0,83 0,84 0,82 0,83 

Based on the evaluation results in Tables 6, the best scenario is the use of the 

EfficientNet-B2 model with an under sampling approach and a 70% training and 

30% testing data split. This scenario consistently delivers the highest evaluation 

results across all metrics, with accuracy, precision, recall, and F1-score each 

reaching 0.89. These values indicate that the model in this scenario has the most 

balanced and reliable classification performance compared to other scenarios, 

making it the most optimal choice for under sampling data usage. 

Across all tested scenarios, the EfficientNet-B2 model demonstrates superior 

performance compared to MobileNet V3 Large. This is evident from the highest 

evaluation metric values achieved by EfficientNet-B2 in the oversampling scenario 

with a 70/30 data split, where accuracy, precision, recall, and F1-score each reach 

0.94. In contrast, the best performance of MobileNet V3 Large was observed in the 

oversampling scenario with an 80/20 split, achieving metric values of 0.93. 

Although the performance gap is not large, EfficientNet-B2 consistently 

outperforms MobileNet V3 Large across original, oversampling, and 

undersampling data. Therefore, it can be concluded that in this study, EfficientNet-

B2 provides better classification results compared to MobileNet V3 Large. 

 

4. Conclusion 

Based on the training and evaluation results, it can be concluded that the 

EfficientNet-B2 architecture consistently outperforms MobileNet V3 Large across 

all learning scenarios, including oversampling, original data, and undersampling. 

The overall best performance is achieved using EfficientNet-B2 with the 

oversampling method and a 70% training and 30% testing data split. In this 
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scenario, the model reaches a training accuracy of 99.61%, testing accuracy of 

93.65%, and validation accuracy of 94.33%. Additiplially, it achieves precision, 

recall, and F1-score values of 0.94 each. These results demonstrate not only high 

classification accuracy but also strong generalization capabilities on unseen data, 

making this configuration highly suitable for high reliability applications such as 

medical diagnosis and critical detection systems. 

Alternatively, for use cases with limited computational resources or a need 

for faster training time, the original data scenario with an 80/20 split provides a 

good balance between training efficiency and performance, achieving an average 

evaluation score of 0.91. Furthermore, the undersampling scenario with a 70/30 

split offers the fastest training time at only 4.427 seconds, while still maintaining 

stable evaluation metrics averaging 0.89. Therefore, while the oversampling 

scenario with EfficientNet-B2 remains the most optimal in terms of accuracy and 

overall performance, selecting the most appropriate scenario should consider the 

specific requirements and constraints of each use case. 
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