Evaluation of Human Development Index Clustering Results Using Fuzzy C-Means and Possibilistic C-Means

Authors

  • Lativa Yulia Taviani Universitas Pembangunan Nasional Veteran Jawa Timur
  • Eva Yulia Puspaningrum Universitas Pembangunan Nasional Veteran, Jawa Timur, Surabaya, Indonesia
  • Achmad Junaidi Universitas Pembangunan Nasional Veteran, Jawa Timur, Surabaya, Indonesia

DOI:

https://doi.org/10.56480/jln.v5i2.1571

Abstract View:

16

PDF downloads:

18

Keywords:

Human Development Index, Fuzzy C-Means, Possibilistic C-Means, Clustering Evaluation, Bayesian Optimization

Abstract

This study aims to evaluate the clustering results of the Human Development Index (HDI) in East Java using two fuzzy-based algorithms: Fuzzy C-Means (FCM) and Possibilistic C-Means (PCM). The dataset includes key indicators Life Expectancy (LE), Mean Years of Schooling (MYS), Expected Years of Schooling (EYS), and Adjusted Per Capita Expenditure (APCE) sourced from the Central Bureau of Statistics. After preprocessing the data and applying Bayesian Optimization to determine optimal parameters, both clustering methods were executed and evaluated using internal metrics: Partition Coefficient (PC), Partition Entropy (PE), and Modified Partition Coefficient (MPC). The results show that both FCM and PCM successfully formed three meaningful clusters representing different levels of human development. However, PCM achieved higher clustering quality, as indicated by superior PC, PE, and MPC values. These findings highlight the effectiveness of PCM in handling complex, overlapping socio-economic data and offer insights for more accurate regional segmentation. The methodology is also applicable to broader socio-economic clustering tasks beyond HDI.

References

Budiawan, J. C. (2024). Fuzzy Clustering untuk Text Dimensionality Reduction.

Faturahman, R. D., & Hidayati, N. (2025). Implementasi fuzzy c-means dalam pengelompokan tingkat kemiskinan pada kabupaten/kota di Provinsi Jawa Tengah. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 10(1), 137–149. https://doi.org/10.29100/jipi.v10i1.5747

Hartanto, S., Adzan, M. S., Haq, D. Z., & Novitasari, D. C. R. (2024). Analisis indeks pembangunan manusia di Jawa Timur tahun 2022–2023 berdasarkan indikator menggunakan metode fuzzy c-means. INTEK: Jurnal Informatika dan Teknologi Informasi, 7(2), 45–54. https://doi.org/10.37729/intek.v7i2.5358

Hendrastuty, N. (2024). Penerapan data mining menggunakan algoritma k-means clustering dalam evaluasi hasil pembelajaran siswa. Jurnal Ilmiah Informatika dan Ilmu Komputer (JIMA-ILKOM), 3(1), 46–56. https://doi.org/10.58602/jima-ilkom.v3i1.26

Huddin, S. (2023). Penerapan fuzzy c-means pada klasterisasi penerima bantuan pangan non tunai. KLIK: Kajian Ilmiah Informatika dan Komputer, 4(1), 453–461.

Isah, I., Estri, M. N., & Larasati, N. (2024, October). Perbandingan metode fuzzy c-means dan fuzzy probabilistic c-means dalam pengelompokan provinsi di Indonesia berdasarkan indeks pembangunan manusia tahun 2022. Prosiding Seminar Nasional Sains Data, 4(1), 832–841. https://doi.org/10.33005/senada.v4i1.346

Kadja, M. T. G., Rumlaklak, N. D., & Djahi, B. S. (2023). Penerapan metode fuzzy c-means dalam penentuan penerima beasiswa program Indonesia pintar (PIP). J-ICON: Jurnal Komputer dan Informatika, 11(1), 37–43. https://doi.org/10.35508/jicon.v11i1.9846

Lestari, M., Kartini, D., Budiman, I., Faisal, M. R., & Muliadi, M. (2023). Comparison of industrial business grouping using fuzzy c-means and fuzzy possibilistic c-means methods. Telematika, 16(2), 91–102. https://doi.org/10.35671/telematika.v16i2.2548

Mubarok, M. N. (2024). Implementasi fuzzy possibilistic c-means dengan validitas modified partition coefficient pada clustering prevalensi balita stunting di Indonesia (Doctoral dissertation, Universitas Islam Negeri Maulana Malik Ibrahim).

Putra, R. F., Zebua, R. S. Y., Budiman, B., Rahayu, P. W., Bangsa, M. T. A., Zulfadhilah, M., ... & Andiyan, A. (2023). Data Mining: Algoritma dan Penerapannya. PT. Sonpedia Publishing Indonesia.

Rahayu, P. W., Sudipa, I. G. I., Suryani, S., Surachman, A., Ridwan, A., Darmawiguna, I. G. M., ... & Maysanjaya, I. M. D. (2024). Buku Ajar Data Mining. PT. Sonpedia Publishing Indonesia.

Sari, A. I. C., A’ini, Z. F., & Tukiran, M. (2022). Pengaruh anggaran pendidikan dan kesehatan terhadap indeks pembangunan manusia di Indonesia. JABE (Journal of Applied Business and Economic), 9(2), 127–136. https://doi.org/10.30998/jabe.v9i2.15082

Setiawan, Z., Fajar, M., Priyatno, A. M., Putri, A. Y. P., Aryuni, M., Yuliyanti, S., ... & Wijaya, A. (2023). Buku Ajar Data Mining. PT. Sonpedia Publishing Indonesia.

Simanjuntak, T. F. B., Zuhriadi, M., Habeahan, J., Lubis, R. J., Hutapea, T. P. U., & Sirait, M. M. (2024). Pengaruh angka harapan hidup dan kemiskinan terhadap indeks pembangunan manusia di Indonesia. Jurnal Intelek dan Cendikiawan Nusantara, 1(3), 4012–4019.

Sudipa, I. G. I., Sarasvananda, I. B. G., Prayitno, H., Putra, I. N. T. A., Darmawan, R., & WP, D. A. (2023). Teknik Visualisasi Data. PT. Sonpedia Publishing Indonesia.

Thakkar, H., Shah, V., Yagnik, H., & Shah, M. (2021). Comparative anatomization of data mining and fuzzy logic techniques used in diabetes prognosis. Clinical eHealth, 4, 12–23. https://doi.org/10.1016/j.ceh.2020.11.001

Yasir, A., & Firmansyah, A. U. (2024). Implementasi metode fuzzy c-means dan metode AHP dalam pemilihan promosi jabatan karyawan berbasis web (studi kasus: PT. Tunas Dwipa Matra Sekampung). Journal of Science and Social Research, 7(4), 1616–1619.

Zai, C. (2022). Implementasi data mining sebagai pengolahan data. Jurnal Portal Data, 2(3).

Zhang, C., Xue, J., & Gu, X. (2022). An online weighted Bayesian fuzzy clustering method for large medical data sets. Computational Intelligence and Neuroscience, 2022, 6168785. https://doi.org/10.1155/2022/6168785

205-221

Downloads

Published

07-06-2025

How to Cite

Taviani, L. Y., Puspaningrum, E. Y., & Junaidi, A. (2025). Evaluation of Human Development Index Clustering Results Using Fuzzy C-Means and Possibilistic C-Means. Literasi Nusantara, 5(2), 205–221. https://doi.org/10.56480/jln.v5i2.1571

Issue

Section

Articles

Categories