Implementation of Convolution Neural Networks for Classifying the Ripeness of Guava Fruit on Android

Authors

  • Mochammad Andika Putra Mubarok Universitas Pembangunan Nasional Veteran, Jawa Timur, Surabaya, Indonesia
  • Budi Nugroho Universitas Pembangunan Nasional Veteran, Jawa Timur, Surabaya, Indonesia
  • Yisti Vita Via Universitas Pembangunan Nasional Veteran, Jawa Timur, Surabaya, Indonesia

DOI:

https://doi.org/10.56480/jln.v5i3.1601

Abstract View:

32

PDF downloads:

35

Keywords:

Classification of guava ripeness, CNN, VGG16, EfficientNetB0, Android

Abstract

Determining the ripeness level of guava manually is often subjective and requires specific expertise. To address this issue, this study developed an Android-based system to classify guava ripeness using two Convolutional Neural Network (CNN) architectures: VGG16 and EfficientNetB0. The dataset includes images of guava categorized into three ripeness levels: unripe, semi-ripe, and ripe. Both CNN models were implemented and compared based on accuracy, computational efficiency, and inference time after being converted into TensorFlow Lite format for Android integration. Test results show that EfficientNetB0 performs better for mobile use, achieving 93.5% accuracy and faster average inference time than VGG16. This system is expected to help farmers and consumers identify guava ripeness quickly, easily, and accurately using an Android device.

References

Anatya, S., Mawardi, V. C., & Hendryli, J. (2020, December). Fruit maturity classification using convolutional neural networks method. In IOP Conference Series: Materials Science and Engineering (Vol. 1007, No. 1, p. 012149). IOP Publishing. https://doi.org/10.1088/1757-899X/1007/1/012149

Brahimi, M., Boukhalfa, K., & Moussaoui, A. (2017). Deep learning for tomato diseases: Classification and symptoms visualization. Applied Artificial Intelligence, 31(4), 299-315. https://doi.org/10.1080/08839514.2017.1315516

Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing (4th ed.). Pearson.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. (Chapter 5: Machine Learning Basics)

Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70-90. https://doi.org/10.1016/j.compag.2018.02.016

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using deep learning for image-based plant disease detection. Frontiers in Plant Science, 7, 1419. https://doi.org/10.3389/fpls.2016.01419

Putra, I. C., & Prabowo, W. A. E. (2024, September). Implementation of Convolutional Neural Network Based on InceptionV3 to Classify Guava Quality. In 2024 International Seminar on Application for Technology of Information and Communication (iSemantic) (pp. 112-117). IEEE. https://doi.org/10.1109/iSemantic63362.2024.10762157

Rahayu, R. A., & Fitriani, D. (2021). Deteksi Tingkat Kematangan Buah Menggunakan Teknologi Pengolahan Citra Digital. Jurnal Teknologi dan Sistem Komputer, 9(3), 207–214. https://doi.org/10.14710/jtsiskom.9.3.207-214

Rizzo, M., Marcuzzo, M., Zangari, A., Gasparetto, A., & Albarelli, A. (2023). Fruit ripeness classification: A survey. Artificial Intelligence in Agriculture, 7, 44-57. https://doi.org/10.1016/j.aiia.2023.02.004

Saragih, R. E., & Emanuel, A. W. (2021, April). Banana ripeness classification based on deep learning using convolutional neural network. In 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT) (pp. 85-89). IEEE. https://doi.org/10.1109/EIConCIT50028.2021.9431928

Sari, M. W., Sitorus, S. P., & Pane, R. (2025). Implementation of Convolutional Neural Network (CNN) Method in Determining the Level of Ripeness of Mango Fruit Based on Image. Jurnal Penelitian Pendidikan IPA, 11(5), 419-428. https://doi.org/10.29303/jppipa.v11i5.11436

Wiktasari, T. R. Y., Alifiansyah, M. F., Kurniangsih, L. T., & Hasan, A. (2025). Classification System of Crystal Guava (Psidium Guajava) Using Convolutional Neural Network And Rectrified Linear Unit Method Based on Android. JAICT, 10(1), 328-340.

Downloads

Published

11-06-2025

How to Cite

Mubarok, M. A. P. M., Nugroho, B., & Via, Y. V. (2025). Implementation of Convolution Neural Networks for Classifying the Ripeness of Guava Fruit on Android. Literasi Nusantara, 5(3), 284–297. https://doi.org/10.56480/jln.v5i3.1601

Issue

Section

Articles

Categories