Gold Price Prediction Using Hybrid Deep Learning by Integrating LSTM-ANN Network with GARCH Model

Authors

  • Thrisna Ramadhan Universitas Pembangunan Nasional Veteran Jawa Timur
  • Henni Endah Wahanani Universitas Pembangunan Nasional Veteran, Jawa Timur, Surabaya, Indonesia
  • Firza Prima Aditiawan Universitas Pembangunan Nasional Veteran, Jawa Timur, Surabaya, Indonesia

DOI:

https://doi.org/10.56480/jln.v5i3.1624

Abstract View:

0

PDF downloads:

0

Keywords:

gold price prediction, hybrid deep learning, LSTM-ANN Network, GARCH model, Volatility

Abstract

Gold investment is increasingly favored by the public as a relatively stable long-term investment instrument. However, the unpredictable fluctuations in gold prices make it difficult for investors to make appropriate investment decisions. Complex factors such as market volatility, economic news, changes in monetary policy, inflation, and geopolitical uncertainty lead to sharp movements in gold prices, which are difficult to predict using conventional methods. This study aims to develop an accurate gold price prediction model using a hybrid deep learning approach by integrating the LSTM-ANN Network and the GARCH model. This hybrid method combines the strengths of the LSTM-ANN Network in capturing temporal patterns and non-linear trends in historical price data, with the ability of the GARCH model to handle gold price volatility. This approach is expected to provide more accurate predictions compared to conventional forecasting methods. This study uses historical gold price data as the basis for prediction, focusing on gold price forecasting over a specific time period. The results of this study are expected to contribute to the development of commodity price prediction models, particularly gold, and provide a tool to help investors make more informed investment decisions.

References

García-Medina, A., & Aguayo-Moreno, E. (2023). LSTM–GARCH hybrid model for the prediction of volatility in cryptocurrency portfolios. Computational Economics, 63(1), 1511–1542. No. A1-S-43514. 10.1007/s10614-023-10373-8

Suwandi, A. (2020). Prediksi harga emas menggunakan metode single moving average. JITEKH (Jurnal Ilmu dan Teknologi Komputer), 8(1), 1–5. Teknik Informatika STMIK Budi Darma. https://doi.org/10.35447/jitekh.v8i1.194

Putri, D. E., Debataraja, N. N., & Imro’ah, N. (2023). Prediksi harga emas menggunakan Fuzzy Time Series Lee. Buletin Ilmiah Math Stat dan Terapannya (Bimaster), 12(2), 151–160. https://doi.org/10.26418/bbimst.v12i2.65272

Erwansyah, D. M., & Haryanti, T. (2023). Prediksi harga emas menggunakan algoritma regresi linear. Jurnal Ilmiah Computing Insight, 5(1), Universitas Muhammadiyah Surabaya. https://doi.org/10.30651/comp_insight.v5i1.21764

Koo, E., & Kim, G. (2022). A hybrid prediction model integrating GARCH models with a distribution manipulation strategy based on LSTM networks for stock market volatility. IEEE Access, 10, 9354–9368. 10.1109/ACCESS.2022.3163723

Dewi, K. C., & Ciptayani, P. I. (2022). Pemodelan sistem rekomendasi cerdas menggunakan hybrid deep learning. Jurnal Sistem Informasi dan Sains Teknologi, 4(2), Politeknik Negeri Bali. https://doi.org/10.31326/sistek.v4i2.1157

Kowsher, M., Tahabilder, A., Sanjid, M. Z. I., Prottasha, N. J., Uddin, M. S., Hossain, M. A., & Jilani, M. A. K. (2021). LSTM-ANN & BiLSTM-ANN: Hybrid deep learning models for enhanced classification accuracy. Procedia Computer Science, 193, 131–

https://doi.org/10.1016/j.procs.2021.10.013

Agusmawati, N. K., Khoiriyah, F., & Tholib, A. (2023). Prediksi harga emas menggunakan metode LSTM dan GRU. JITET (Jurnal Informatika dan Teknik Elektro Terapan), 11(3), Probolinggo. https://doi.org/10.23960/jitet.v11i3.3250

Sumiyati, Arisandi, B. D. A., & Wilujeng, P. R. (2022). Metode ARCH/GARCH untuk memprediksi hubungan economic uncertainty (COVID-19) dan volatilitas saham. Jurnal Bisnis dan Akuntansi, 24(1), Bangka. https://doi.org/10.34208/jba.v24i1.1152

Lubis, J., & Kharisudin, I. (2021, February). Metode Long Short Term Memory dan Generalized Autoregressive Conditional Heteroscedasticity untuk pemodelan data saham. PRISMA, 4, 652–658. Retrieved from https://journal.unnes.ac.id/sju/prisma/article/view/44897

Downloads

Published

01-07-2025

How to Cite

Ramadhan, T., Wahanani, H. E., & Aditiawan, F. P. (2025). Gold Price Prediction Using Hybrid Deep Learning by Integrating LSTM-ANN Network with GARCH Model. Literasi Nusantara, 5(3), 315–329. https://doi.org/10.56480/jln.v5i3.1624

Most read articles by the same author(s)