A Deep Learning Approach for Emotion Detection in Indonesian Social Media Texts

Authors

  • Rangga Widiasmara Informatics, UPN Veteran Jawa Timur
  • I Gede Susrama Mas Diyasa
  • Chrystia Aji Putra

DOI:

https://doi.org/10.56480/jln.v6i1.1647

Abstract View:

4

PDF downloads:

3

Keywords:

Emotion Classification, Deep Learning, CNN, BiLSTM, Indonesian Language

Abstract

Automated emotion analysis of Indonesian social media text is challenging due to linguistic complexity and the nuanced use of emojis. This study addresses this by designing and evaluating a serial hybrid deep learning architecture combining a Convolutional Neural Network (CNN) and a Bidirectional Long Short-Term Memory (BiLSTM) network. The model was trained on an augmented Emotion Twitter dataset from the IndoNLU benchmark. Following a comprehensive preprocessing pipeline, the model achieved a promising test accuracy of 89.24% and a Macro F1-Score of 0.90 across five emotion classes. While the model excelled at identifying distinct emotions like 'love' (F1-Score of 0.96), it faced challenges in distinguishing between 'happy' and 'sadness'. These results establish the serial hybrid CNN-BiLSTM architecture as a viable and effective baseline for Indonesian emotion classification, providing a solid foundation for future research into more advanced models.

References

Madan, A., & Kumar, D. (2024). Real-time topic-based sentiment analysis for movie tweets using hybrid approach. Knowledge and Information Systems, 66(7), 3061–3083. https://doi.org/10.1007/s10115-024-02298-x

Pane, S. F., Ramdan, J., Putrada, A. G., Fauzan, M. N., Awangga, R. M., & Alamsyah, N. (2022). A hybrid CNN-LSTM model with word emoji embedding for improving the Twitter sentiment analysis on Indonesia’s PPKM policy. Dalam 2022 International Conference on Information Technology Systems and Innovation (ICITSI). IEEE. https://doi.org/10.1109/ICITSI56531.2022.10057720

Phan, H. T., Seo, Y.-S., & Nguyen, N. T. (t.t.). Fuzzy hybrid CNN-LSTM model for sentence-level sentiment analysis. SSRN. https://doi.org/10.2139/ssrn.4994871

Riyadi, S., Andriyani, A. D., & Sulaiman, S. N. (2024). Improving hate speech detection using double-layers hybrid CNN-RNN model on imbalanced dataset. IEEE Access, 12, 159660–159668. https://doi.org/10.1109/ACCESS.2024.3487433

Shaver, P. R., Murdaya, U., & Fraley, R. C. (2001). Structure of the Indonesian emotion lexicon. Asian Journal of Social Psychology, 4(3), 201–224. https://doi.org/10.1111/1467-839X.00086

Singh, A. K., Bhushan, A., & Dwivedi, D. (2024). Analyzing sentiments on Twitter using deep learning techniques. International Journal of Modern Education and Computer Science, 16(1), 60–72. https://doi.org/10.5815/ijmecs.2024.01.05

Wilie, B., Vincent, T. N., Cahyawijaya, S., Li, X., Lim, Z. Y., Sutiono, A., ... & Purwarianti, A. (2020). IndoNLU: Benchmark and resources for evaluating Indonesian natural language understanding. Dalam Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing. Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.aacl-main.85

Downloads

Published

21-07-2025

How to Cite

Widiasmara, R., Mas Diyasa, I. G. S., & Putra, C. A. (2025). A Deep Learning Approach for Emotion Detection in Indonesian Social Media Texts. Literasi Nusantara, 6(1), 43–52. https://doi.org/10.56480/jln.v6i1.1647