InceptionV3, ResNet50, ResNet18 and MobileNetV2 Performance Comparison on Face Recognition Classification

Authors

  • Mohammad Rafka Mahendra Ariefwan Program Studi Sains Data, Fakultas Ilmu Komputer, UPN “Veteran” Jawa Timur, Surabaya, Indonesia
  • I Gede Susrama Mas Diyasa Program Studi Magister Teknologi Informasi, Fakultas Ilmu Komputer, UPN “Veteran” Jawa Timur, Surabaya, Indonesia
  • Kartika Maulidya Hindrayani Program Studi Sains Data, Fakultas Ilmu Komputer, UPN “Veteran” Jawa Timur, Surabaya, Indonesia

DOI:

https://doi.org/10.56480/jln.v4i1.990

Abstract View:

338

PDF downloads:

280

Keywords:

Face Recognition, Attendance, CNN, Android, Model Architecture

Abstract

This research aims to design a facial recognition system for faculty attendance in the Data Science Program at UPN "Veteran" East Java. The study proposes a solution by integrating CNN-based facial recognition technology with Android devices. The methodology involves training CNN models using a dataset of faculty faces and comparing various architectures such as ResNet, MobileNet, and InceptionV3. The research methodology encompasses data collection, data preprocessing, model creation, model comparison, performance evaluation, and implementation. Results from the study, utilizing Convolutional Neural Network models and testing various architectures, reveal the architecture with the best facial recognition performance achieving an average accuracy rate of 77%.

References

Bahety, S. S., Kumar, K., Tejaswi, V., Balagar, S. R., & Anil, B. C. (2020). Implementation of Automated Attendance System using Facial Identification from Deep Learning Convolutional Neural Networks. International Journal of Engineering Research & Technology, 8(15), 170–174.

Chowdhury, S., Nath, S., Dey, A., & Das, A. (2020). Development of an Automatic Class Attendance System using CNN-based Face Recognition. ETCCE 2020 - International Conference on Emerging Technology in Computing, Communication and Electronics, 2–6. https://doi.org/10.1109/ETCCE51779.2020.9350904

Dongmei, Z., Ke, W., Hongbo, G., Peng, W., Chao, W., & Shaofeng, P. (2020). Classification and identification of citrus pests based on InceptionV3 convolutional neural network and migration learning. 2020 International Conference on Internet of Things and Intelligent Applications, ITIA 2020. https://doi.org/10.1109/ITIA50152.2020.9312359

Goel, A., Goel, A. K., & Kumar, A. (2023). The role of artificial neural network and machine learning in utilizing spatial information. Spatial Information Research, 31(3), 275–285. https://doi.org/10.1007/s41324-022-00494-x

Riyantoko, P. A., Sugiarto, & Hindrayani, K. M. (2021). Facial Emotion Detection Using Haar-Cascade Classifier and Convolutional Neural Networks. Journal of Physics: Conference Series, 1844(1). https://doi.org/10.1088/1742-6596/1844/1/012004

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4510–4520. https://doi.org/10.1109/CVPR.2018.00474

Srinivasu, P. N., Sivasai, J. G., Ijaz, M. F., Bhoi, A. K., Kim, W., & Kang, J. J. (2021). Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM. Sensors, 21, 1–27.

Susrama, I. G., Putra, A. H., & Ariefwan, M. (2022). Feature Extraction for Face Recognition Using Haar Cascade Classifier. International Seminar of Research Month 2021, 197–206. https://doi.org/10.11594/nstp.2022.2432

Venkateswarlu, I. B., Kakarla, J., & Prakash, S. (2020). Face mask detection using MobileNet and Global Pooling Block. 4th IEEE Conference on Information and Communication Technology, CICT 2020, 20, 0–4. https://doi.org/10.1109/CICT51604.2020.9312083r.

Downloads

Published

11/01/2023

How to Cite

Ariefwan, M. R. M., Diyasa, I. G. S. M., & Hindrayani, K. M. (2023). InceptionV3, ResNet50, ResNet18 and MobileNetV2 Performance Comparison on Face Recognition Classification. Literasi Nusantara, 4(1), 1–10. https://doi.org/10.56480/jln.v4i1.990