Identification of Abnormal Spermatozoa Motility Using the SVM Algorithm

Authors

  • Mohammad Daniel Sulthonul Karim Informatics Study Program, Faculty of Computer Science, Pembangunan Nasional “Veteran” University, East Java, Surabaya
  • Eva Yulia Puspaningrum Informatics Study Program, Faculty of Computer Science, Pembangunan Nasional “Veteran” University, East Java, Surabaya
  • I Gede Susrama Mas Diyasa Informatics Study Program, Faculty of Computer Science, Pembangunan Nasional “Veteran” University, East Java, Surabaya

DOI:

https://doi.org/10.56480/jln.v5i1.1324

Abstract View:

21

PDF downloads:

4

Keywords:

Spermatozoa, Motility, TrackPy, SVM

Abstract

Spermatozoa motility is one of the key indicators in determining male fertility quality. Manual assessment of motility abnormalities often requires significant time and effort, thus necessitating a more efficient and accurate automated approach. This study aims to identify abnormalities in spermatozoa motility using the Support Vector Machine (SVM) algorithm, utilizing microscopic video data analyzed through TrackPy for spermatozoa trajectory tracking. The analysis process involves data acquisition, spermatozoa detection in each frame, sperm trajectory construction, and trajectory classification into normal or abnormal categories. The SVM model was trained using a dataset derived from spermatozoa trajectories classified based on parameters such as average velocity and trajectory linearity. The results show that the method achieved the highest accuracy of 89 percent in identifying spermatozoa motility abnormalities in HD resolution videos with a frame rate of 30 fps.

References

Akbar, H., KM, S., Epid, M., Qasim, N. M., Hidayani, W. R., KM, S., ... & KM, S. (2021). Teori Kesehatan Reproduksi. Yayasan Penerbit Muhammad Zaini.

Allan, D. B., et al. (2021). “soft-matter/trackpy: Trackpy v0. 5.0,” Zenodo .Repository.

Aristoteles, A., Syarif, A., & Lumbanraja, F. R. (2023). Systematic Review: Perkembangan Machine Learning pada Sperma Manusia. Jurnal Teknoinfo, 17(1), 112-118.

Baharuddin, A., Irmawati. (2021). INFERTILITAS DAN PENDIDIKAN SEKS. Cahaya Bintang Cemerlang.

Chandra, M. A., & Bedi, S. S. (2021). Survey on SVM and their application in image classification. International Journal of Information Technology, 13(5), 1-11.

Dai, C., et al. (2021). Advances in sperm analysis: techniques, discoveries and applications. Nature Reviews Urology, 18(8), 447-467.

Judijanto, L., Al-Amin, A. A., & Nurhakim, L. (2024). Implementasi Teknologi Artificial Intelligence dan Machine Learning dalam Praktik Akuntansi dan Audit: Sebuah Revolusi atau Evolusi. COSMOS: Jurnal Ilmu Pendidikan, Ekonomi dan Teknologi, 1(6), 470-483.

Masdiyasa, I. G. S., et al. (2018). Modified background subtraction statistic models for improvement detection and counting of active spermatozoa motility. Lontar Komput. J. Ilm. Teknol. Inf, 28.

Masdiyasa, I. G. S., et al. (2024). Abnormality Determination of Spermatozoa Motility Using Gaussian Mixture Model and Matching-based Algorithm. Journal of Robotics and Control (JRC), 5(1), 103-116.

Menkveld, R., et al (2001). Semen parameters, including WHO and strict criteria morphology, in a fertile and subfertile population: an effort towards standardization of in-vivo thresholds. Human reproduction, 16(6), 1165-1171.

Mortimer, D. (2020). Semen Analysis and Sperm Washing Techniques. CRC Press.

Ratnawati, D., Isnaini, N., & Susilawati, T. (2019). Faktor-faktor yang mempengaruhi analisis motilitas spermatozoa dengan menggunakan CASA. Wartazoa, 29(3), 145-152.

Rifa’i, Y. (2023). Analisis Metodologi Penelitian Kulitatif dalam Pengumpulan Data di Penelitian Ilmiah pada Penyusunan Mini Riset. Cendekia Inovatif Dan Berbudaya, 1(1), 31-37.

Van Der Horst, G. (2020). Computer Aided Sperm Analysis (CASA) in domestic animals: Current status, three D tracking and flagellar analysis. Animal reproduction science, 220, 106350.

World Health Organization. (2021). WHO Laboratory Manual for The Examination and Processing of Human Semen. 6th ed. Geneva: World Health Organization.

1-9

Downloads

Published

01/13/2025

How to Cite

Karim, M. D. S., Puspaningrum, E. Y., & Diyasa, I. G. S. M. (2025). Identification of Abnormal Spermatozoa Motility Using the SVM Algorithm. Literasi Nusantara, 5(1), 1–9. https://doi.org/10.56480/jln.v5i1.1324

Most read articles by the same author(s)