Implementation of Convolutional Neural Network for Road Damage Detection and Classification in Surabaya City

Authors

  • Nugraha Varrel Kusuma Informatics Departemen, Faculty of Computer Science, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia
  • I Gede Susrama Mas Diyasa University of Pembangunan Nasional Veteran Jawa Timur
  • Fetty Tri Anggraeny Informatics Departemen, Faculty of Computer Science, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya, Indonesia

DOI:

https://doi.org/10.56480/jln.v5i1.1357

Abstract View:

4

PDF downloads:

4

Keywords:

Road Damage Detection, CNN, Data Augmentation, Classification Performance

Abstract

Road damage is a significant infrastructural problem that impacts the safety of road users and economic efficiency. The current road damage detection system, which relies on manual inspection, has limitations in speed and accuracy. Therefore, this study proposes the use of a conventional Convolutional Neural Network (CNN) to enhance accuracy and efficiency in the detection and classification of road damage in Surabaya City. The methods applied include data preprocessing and basic data augmentation techniques such as rotation and flipping. The dataset used comes from CV. Wastu Kencana Teknik, consisting of four road damage classes: potholes, surface delamination, cracks, and edge cracks. The implementation of the CNN model with standard configurations shows potential for application in an AI-based road infrastructure monitoring system. The model evaluation was performed using a confusion matrix and ROC-AUC, indicating that the model has stable and accurate classification performance. With these results, the model has the potential to enhance the effectiveness of detection and decision-making in road maintenance.

References

Ahmad, F. salam. (2022). The Impact of Trans Java Toll Road Construction on Economic Growth in Central Java. JEKP, 11(1), 1–18. https://doi.org/10.29244/jekp.11.1.2022.1-18

Jasri, H., Anwardi, A., & Hamdy, M. I. (2020). Identifikasi Waste Proyek Konstruksi Jalan dengan Menggunakan Metode Lean Project Management. Jurnal Teknik Industri: Jurnal Hasil Penelitian Dan Karya Ilmiah Dalam Bidang Teknik Industri, 5(2), 115–124. https://doi.org/10.24014/jti.v5i2.8999

KETERBATASAN DANA SEBABKAN PENANGANAN JALAN TIDAK MENYELURUH. (n.d.). In Kementerian PUPR. https://pu.go.id/berita/keterbatasan-dana-sebabkan-penanganan-jalan-tidak-menyeluruh?utm_source=chatgpt.com

Rusli, C. R., & Ridayati, R. (2024). Dampak Ekonomi Akibat Kerusakan Infrastruktur Jalan di Desa Wisata Srikeminut Imogiri Bantul. 5TH CEEDRIMS 2024, 5(1), 42–48. //journal.itny.ac.id/index.php/CEEDRIMS/article/view/5046

Siahay, M. C., Ahmad, S. N., Supacua, H. A. I., Ampangallo, B. A., Rachman, R. M., Latupeirissa, J. E., Maitimu, A., & others. (2023). Pembangunan Infrastruktur di Indonesia. TOHAR MEDIA. https://books.google.co.id/books?id=IOvpEAAAQBAJ

Susilo, H., Bani, M. N., Aditya, M. T., Cahyani, E., & Kurniawan, A. M. (2024). ANALYSIS OF ROAD DAMAGE DETECTION USING ORTHOPHOTO MAP FROM UNMANNED AERIAL VEHICLE (UAV-PHOTOGRAMMETRY). Quateknika, 14(1), 53–65. https://doi.org/10.35457/quateknika.v14i1.3258

Downloads

Published

13-02-2025

How to Cite

Kusuma, N. V., Diyasa, I. G. S. M., & Anggraeny, F. T. (2025). Implementation of Convolutional Neural Network for Road Damage Detection and Classification in Surabaya City. Literasi Nusantara, 5(1), 53–64. https://doi.org/10.56480/jln.v5i1.1357