Classification Of Lung Disease Images Using EfficientNetB2 Model With Random Sampling

Authors

  • Rengga Yogie Febrianto Universitas Pembangunan Nasional Veteran, Jawa Timur, Surabaya, Indonesia
  • I Gede Susrama Mas Diyasa Universitas Pembangunan Nasional “Veteran” Jawa Timur Jalan Raya Rungkut Madya, Surabaya, East Java 60294, Indonesia
  • Eka Prakarsa Mandyartha Universitas Pembangunan Nasional “Veteran” Jawa Timur Jalan Raya Rungkut Madya, Surabaya, East Java 60294, Indonesia

DOI:

https://doi.org/10.56480/jln.v5i3.1650

Abstract View:

9

PDF downloads:

6

Keywords:

EfficientNet B2, Random Sampling, Lung Disease, Class Imbalance

Abstract

The rapid advancement of deep learning in medical imaging has significantly improved lung disease diagnosis, with CNNs like EfficientNet showing strong performance on chest X-ray analysis. However, class imbalance remains a challenge, often reducing model accuracy. This study examines the impact of random oversampling compared to original and undersampled data in classifying lung diseases using EfficientNet-B2. Emphasizing its simplicity, the study evaluates whether random oversampling can match more complex methods like SMOTE. Through systematic data collection, preprocessing, and model training, performance is assessed using accuracy, precision, recall, and F1-score. Results show EfficientNet-B2 consistently outperforms MobileNetV3-Large across all sampling methods, with random oversampling achieving the best results—training accuracy of 99.61% and testing accuracy of 93.65% under a 70:30 split. While oversampling proves most effective, method selection should consider specific application needs, resource constraints, and deployment scale to ensure reliable diagnostic outcomes.

References

Alberto, fernández, Salvador, garcíaa, Mikel, galar, Ronaldo, C. P., Bartosz, K., & Francisco, herrera. (n.d.). Learning from Imbalanced Data Sets.

Chawla, N. V, Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. In Journal of Artificial Intelligence Research (Vol. 16).

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning.

Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning from class-imbalanced data: Review of methods and applications. In Expert Systems with Applications (Vol. 73, pp. 220–239). Elsevier Ltd. https://doi.org/10.1016/j.eswa.2016.12.035

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284. https://doi.org/10.1109/TKDE.2008.239

He, H., Zhang, W., & Zhang, S. (2018). A novel ensemble method for credit scoring: Adaption of different imbalance ratios. Expert Systems with Applications, 98, 105–117. https://doi.org/10.1016/j.eswa.2018.01.012

Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on deep learning with class imbalance. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0192-5

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C. S., Liang, H., Baxter, S. L., McKeown, A., Yang, G., Wu, X., Yan, F., Dong, J., Prasadha, M. K., Pei, J., Ting, M., Zhu, J., Li, C., Hewett, S., Dong, J., Ziyar, I., … Zhang, K. (2018). Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell, 172(5), 1122-1131.e9. https://doi.org/10.1016/j.cell.2018.02.010

Kiran, S., & Jabeen, D. I. (2024, May 28). Dataset of Tuberculosis Chest X-rays Images. Mendeley Data. https://doi.org/https://doi.org/10.17632/8J2G3CSPRK.2

Marques, G., Agarwal, D., & de la Torre Díez, I. (2020). Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network. Applied Soft Computing Journal, 96. https://doi.org/10.1016/j.asoc.2020.106691

Pramudhita, D. A., Azzahra, F., Arfat, K., Magdalena, R., & Saidah, S. (2023). Strawberry Plant Diseases Classification Using CNN Based on MobileNetV3-Large and EfficientNet-B0 Architecture ARTICLE INFO ABSTRACT. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI), 9(3), 522–534. https://doi.org/10.26555/jiteki.v9i3.26341

Sait, U., K.V., G. L., Shivakumar, S., Kumar, T., Bhaumik, R., Prajapati, S., Bhalla, K., & Chakrapani, A. (2021). A deep-learning based multimodal system for Covid-19 diagnosis using breathing sounds and chest X-ray images. Applied Soft Computing, 109, 107522. https://doi.org/10.1016/j.asoc.2021.107522

Saputro, E., & Rosiyadi, D. (2022). Penerapan Metode Random Over-Under Sampling Pada Algoritma Klasifikasi Penentuan Penyakit Diabetes. Bianglala Informatika, 10(1), 2022. https://archive.ics.uci.edu/ml/machine-learning-

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0197-0

Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.

Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., Cai, M., Yang, J., Li, Y., Meng, X., & Xu, B. (n.d.). A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19). https://doi.org/10.1007/s00330-021-07715-1/Published

Downloads

Published

21-07-2025

How to Cite

Febrianto, R. Y., Diyasa, I. G. S. M., & Mandyartha, E. P. (2025). Classification Of Lung Disease Images Using EfficientNetB2 Model With Random Sampling. Literasi Nusantara, 5(3), 346–359. https://doi.org/10.56480/jln.v5i3.1650

Issue

Section

Articles

Categories

Most read articles by the same author(s)